MELNIKOV PROCESSES AND NOISE-INDUCED EXITS FROM A WELL

By Emil Simiu,' Member, ASCE, and Michael R. Frey*

ABsTRACT: For a wide class of near-integrable systems with additive or multiplicative noise the mean zero
upcrossing rate for the stochastic system’s Melnikov process 7., provides an upper bound for the system’s

mean exit rate, 7,'. Comparisons between T,

' and ;' show that in the particular case of additive white noise

this upper bound is weak. For systems excited by processes with tail-limited distributions, the stochastic Mel-
nikov approach yields a simple criterion guaranteeing the nonoccurrence of chaos. This is illustrated for the
case of excitation by square-wave, coin-toss dichotomous noise. Finally, we briefly review applications of the
stochastic Melnikov approach to a study of the behavior of wind-induced fluctuating currents over a corrugated
ocean floor; the snap-trough of buckled columns with continuous mass distribution and distributed random
loading; and open-loop control of stochastically excited multistable systems.

INTRODUCTION

Harmonically forced deterministic multistable dynamical
systems used in a variety of analytical studies represent ide-
alized models of systems whose excitations are in fact sto-
chastic. For example, wind, wave, and seismic excitations
have been idealized as harmonic in studies of the behavior
induced by wind in a quasi-geostrophic model of coastal cur-
rents over topography (Allen et al. 1991), a ship capsizing due
to wave forces (Thompson et al. 1990), and the rocking re-
sponse of rigid objects to earthquakes (Yim and Lin 1992). In
these and other studies the idealized system’s Melnikov func-
tion has been used for inferences on the possibility of chaotic
behavior.

The validity of such inferences depends on whether an ap-
propriate choice was made of the amplitude and frequency of
the harmonic function used as an idealization of the actual
stochastic excitation. This cannot be determined unless a sto-
chastic Melnikov theory is used. Therein lies one drawback of
applying Melnikov theory to a deterministic counterpart of the
stochastic system.

There is also a second drawback. For a wide class of mul-
tistable systems, simple zeros of the Melnikov function entail
chaotic phase space transport from preferred regions associ-
ated with the potential wells, that is, they entail the occurrence
of exits from these regions (Wiggins 1992; Frey and Simiu
1993a). For stochastic systems with Gaussian excitation, or
any other excitation with infinitely tailed marginal distribution,
exits can occur no matter how small the noise. On the other
hand, for the idealized system, if the excitation is smaller than
the value that causes the Melnikov function to have simple
zeros, exits cannot occur. The idealized system thus fails to
reflect the full range of transport possibilities in the stochastic
system it purports to model.

A more natural and effective approach is to apply Melnikov
theory directly to the stochastic system. In this paper we re-
view and illustrate our recent development and application of
stochastic Melnikov theory, a term we apply to an extension
of Melnikov theory to stochastic dynamical systems. The ex-
tension is based on the observation that, for a wide class of
dynamical systems, a stochastic additive or multiplicative ex-
citation induces a stochastic Melnikov process (Frey and
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Simiu 1993b; Simiu and Frey 1993; Frey and Simiu 1994;
Simiu and Frey 1994). The Melnikov process has the property
that its mean zero upcrossing rate, denoted by 1/7,, is an upper
bound for the system’s mean exit rate 1/7.: to within an ap-
proximation of order one, on average no transport can occur
across the system’s pseudoseparatrix (Wiggins 1990, p. 528)
during a time interval smaller than 7,. Finally, for a system
excited by noise with tail-limited distribution the stochastic
Melnikov approach yields a remarkably simple criterion guar-
anteeing the nonoccurrence of exits. We conclude that this
approach can provide information on system behavior in a
class of problems for which the Fokker-Planck equation—
otherwise a more powerful approach—is impractical or inap-
plicable.

The following section describes a class of systems to which
the stochastic Melnikov approach is applicable, and briefly re-
views basic material needed for our development of this ap-
proach. The next section applies the stochastic Melnikov ap-
proach to a typical system with colored or white Gaussian
noise. It discusses the use of the mean zero upcrossing rate of
the Melnikov process 1/, as an upper bound for the system’s
mean exit rate 1/7,, and the problem of selecting the amplitude
and frequency of the stochastic excitation’s idealized harmonic
counterpart. Next, comparisons between T, and 7, for additive
white noise excitation are given. Then the application of the
stochastic Melnikov approach to systems excited by noise with
tail-limited distributions is reviewed, followed by review of
applications of this approach to a study of the behavior of
wind-induced fluctuating currents over a corrugated ocean
floor, noise-induced snap-through of a column with continuous
mass distribution, and open-loop control of a class of stochas-
tic multistable systems. Conclusions, including a brief discus-
sion of limitations of the Melnikov approach, follow.

DYNAMICAL SYSTEMS, AND MELNIKOV FUNCTIONS
AND PROCESSES

We consider systems of the form
¥=—V'x) + e[g®) + yG(O) — flx, %)) )]

where € <€ 1; y = a constant; g(#) = a bounded, uniformly
continuous function; and V(x) = a potential function. The func-
tion f(x, X) may, for example, take the form Bx, § > 0, in
which case it represents viscous damping. For definiteness, in
the remainder of this paper we consider this form. We assume
that (1) the unperturbed system (€ = 0) is integrable; and (2)
V(x) has the shape of a multiple well so that the unperturbed
system has a center at the bottom of each well and a saddle
point at the top of the barrier between two adjacent wells. The
stable and unstable manifolds emanating from the saddle point
of the unperturbed system then coincide (i.e., the saddle point
is connected to itself by homoclinic orbits). Finally, we assume
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G(r) is a bounded, uniformly continuous function, or a random
process with properties to be defined later. As a typical ex-
ample belonging to the class of systems just described, unless
otherwise shown we consider in this paper the Duffing-Holmes
equation, which has potential

WVx) = x%4 — x%2 @)
homoclinic orbits with coordinates
x() = (2)" sech(); i(f) = (2)'? sech(tanh(r) (3a,b)
and a modulus of the Fourier transform of the function A(f)
= x(—0
S(w) = (2)"* 7w sech(ww/2) 4)

We also note for later use that

c= r B(1)dr = 4/3 (5)

We now review briefly two cases.

Case 1

In case 1 G(¢) is a bounded and uniformly continuous func-
tion. For sufficiently small €, the perturbed system possesses
invariant stable and unstable manifolds; their intersection with
an arbitrary plane of section (‘‘time slice’’), ¢ = const, is a
pair of curves approaching asymptotically a saddle point that
is €-close to the saddle point of the unperturbed system. The
stable and unstable manifolds of the perturbed system no
longer coincide, as they do in the unperturbed case. To first
order, the distance between them, known as the Melnikov dis-
tance, is proportional to the Melnikov function. The Smale-
Birkhoff theorem states that a necessary condition for chaos
is that the Melnikov function of the system have simple zeros
(Guckenheimer and Holmes 1986; Wiggins 1992). The follow-
ing example, based on work by Beigie et al. (1991), provides
a stepping stone we use later in this section to deal with ex-
citations by Gaussian random processes.

Example 1

Consider the bounded and uniformly continuous function

N
G(r)y = D, cos[w(t + 1)) 6)
jm]

where ¢, = ¢/, and &, denote phase angles. The Melnikov
function induced by G(¢) and g(¢) is

Mttt .. )= —PB J- #(1) dr
+ f hT)g(t + 1, — Ty dr

%0 N
+ f h(t) 2 cos[w,(t + t, — M) dr
- nw=l (7)

where h(t) = X%,(—T) (Wiggins 1992). Denoting the modulus
of the Fourier transform of A(f) by S(w), we have

M@, b, by ..., ) = —Be + 20t 1)
N
+y D Sesinfwft + )]
im] (8)

where ¢ = a constant and z(¢, 7,) denotes the second integral
on the right-hand side of (7); and S(w,) are admittance func-
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tions, referred to in the context of Melnikov theory as scaling
factors for the frequencies w, (Beigie et al. 1991). The nec-
essary condition for chaos is that M(z, o, #, . . ., #y) have simple
ZEros.

Case 2

In case 2, G(?) is a nearly Gaussian, ensemble-uniformly-
continuous (EUC) random process with specified one-sided
spectral density. A stochastic process G(#) is EUC if, given
any 8; > 0, there exists 8, > 0 such that, if Iz, — ;1 < &,, then
1G(t;) — G(1;)] < B, for all times ¢, and ¢, and all realizations
of G() (Frey and Simiu 1993b). Each realization of G(¥) of a
EUC process is bounded and uniformly continuous. A suffi-
ciently small € guarantees that to the random process G(¢) there
corresponds an ensemble of stable and unstable manifolds
such that their intersection with an arbitrary plane of section,
t = const, is an ensemble of pairs of curves approaching
asymptotically an ensemble of saddle points that are e-close
to the saddle point of the unperturbed system. To first order,
the distance between the stable and unstable manifold corre-
sponding to a realization of G(¢) is proportional to the Mel-
nikov function induced by that realization. For any realization
of G(f), the necessary condition for chaos is that the corre-
sponding Melnikov path have simple zeros. The two following
examples are largely based on work by Frey and Simiu
(1993b), and provide a method for dealing with Gaussian noise
and Gaussian white noise in the context of Melnikov theory.

Example: Colored Gaussian Noise

We consider the bounded, EUC random process

N
G(1) = Gu(9) = N)"* E cos(w;! + &) ©)
i=l

where the parameter N of the process is finite, and ¢, and o,
(¢ =1, ..., N) are independent, identically distributed random
variables with, respectively, uniform distribution over the in-
terval [0, 2w], and probability density function p(w,) =
2aW(w,). The process Gy(f), known as Shinozuka noise, has
unit variance and spectral density 2% (w) (Shinozuka 1971).
The Melnikov random process induced by Gy(?) is

0

My(t) = —Bc + 20 + v J. h(MGy(¢ — ) dv (10)

-

where notations of (7) and (8) are used and the parameters z,,
t, ..., ty may be omitted (Frey and Simiu 1993b). The ex-
pectation, spectral density, and variance of My (¢) are

EMy(] = —Bc + 2(1); V(o) = 2wy S (@)W (0);

Var[My] = v* J' S (0)¥(w) dw
b (11a,b,c)

The integral of (10) has the same form as the sum of (8). The
marginal distribution of that integral, and hence the marginal
distribution of the process My(z), is Gaussian in the limit N
— o (Simiu and Frey 1993). By choosing a sufficiently large
N, that marginal distribution can be made as close to a Gauss-
ian distribution as desired; that is, given any M,,, > 0 and &
> 0, there exists N such that 1Py(M) — P(M)l < 8 uniformly
for all M < M., Py(M) is the marginal distribution of My(?),
and the distribution P(M) = limy_..Py(M) is Gaussian. For
sufficiently large N the distribution Py(M) will be an entirely
adequate approximation to P(M), however close the requisite
approximation. Owing to the technical requirement of bound-
edness and uniform continuity needed to prove that the saddle
point persists under perturbation, we do not use the limit N —
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FIG. 1. Phase Plane Diagram Showing Intersecting Stable and
Unstable Manifolds of Stochastically Excited System

o, and use instead N finite but sufficiently large; that is, when
we use the term Gaussian we refer to a process with distri-
bution Py(M) that is arbitrarily close to the Gaussian distri-
bution P(M). Note that this approach in no way limits the
usefulness or rigor of our results. It should be recalled that
constructs such as the Gaussian distribution, the Dirac delta
function, the Heaviside function, white noise, and so forth, are
abstractions, rather than physical realities. If these abstractions
are useful in certain mathematical contexts, they can be used
because they are close approximations to the respective real-
istic representations of the actual physical processes. However,
if there are mathematical contexts in which it is advantegeous
to use representations other than the idealized constructs, this
can again be done provided that those representations are
physically as satisfactory as their idealized counterparts. This
is indeed our case.

Example 2: Gaussian White Noise

We now consider the sequence of processes (k= 1,2, ...)

N
G(1) = Gup(®) = (UN)'? D, cos(wpt + d)  (12)
()3

with spectral densities

_J2m O<ow=ko
V(o) = {O; 0> ko, (13

where w; = a constant frequency. The independent, identically
distributed variates w,; and ¢, have, respectively, probability
density g(w)/(kw,) and uniform distribution over the interval
[0, 2w]. The autocorrelation function of Gy(?) is (G ()Gn(t
+ 7)) = [1/(7w,7)sin(kw,T) (Papoulis 1962, p. 20). For any
finite &, and for sufficiently large finite N, the process Gyu(f)
approximates as closely as desired a Gaussian process Gy(?)
with spectral density W(w). If N and k are both sufficiently
large, the process Gy,(f) approximates white noise as closely
as desired, since the limit for k& — « of the sequence of its
autocorrelation functions is the delta function (Kanwal 1983,
p. 5). The variance of Gy, (?) is kw,. For the dimensional coun-
terpart of the system, Gy,(¢) and v have dimension [T~"?] and
[FT'?] (F = force), respectively, whereas for the dimensional
counterpart of example 1 the excitation Gy(¢) is nondimen-
sional and the dimension of vy is [F]. Comments similar to
those made for example 1 on the use of the term ‘‘Gaussian’’
for a process that is as nearly Gaussian as desired are also
applicable to the term ‘‘Gaussian white noise.’’

The Melnikov process My,(r) induced by Gy (#) has
expectation

ElMy, = —Bc + z(9) (14)

spectral density

2mS*(w); O =k
Vi) = {Oﬂ- OEU;) ke, <@ @ (15)
and variance
kw,
Var[My,] = 2 j S§%(w) dw (16)
1]

It can be shown that since S(w) is the modulus of the Fourier
transform of x,(#), as kK — <o the integral in (16) converges to
a limit denoted by ¢}. (In many cases of practical interest,
e.g., the Duffing equation and the rf Josephson junction,
closed-form expressions for S(w) exist and the integrals can
be calculated numerically.) The limit of the sequence Var[My,]
as k — o is then (yo,)*. For sufficiently large N and k, My,
(1) approximates as closely as desired a Gaussian process with
expectation —fc + z(#) and standard deviation yoy,.

Multiplicative Noise

We have so far assumed that the noise G(z) is additive [see
(1. If in (1) we consider multiplicative noise F(x, ¥)G(?) in-
stead of additive noise G(#), then in the equations for the Mel-
nikov process the function k(1) = %(—7) in the integral reflect-
ing the contribution of the noise is simply replaced by the filter
(Frey and Simiu 1994)

ha(T) = 2= T)F [x,(—T), X(—7)] a7

STOCHASTIC VERSUS DETERMINISTIC MELNIKOV
APPROACH FOR COLORED GAUSSIAN NOISE

Melnikov-Based Upper Bounds for Mean Exit Rate

Fig. 1 shows a hypothetical ‘‘time slice’’ through a reali-
zation of the stable and unstable manifolds of a stochastic
dynamical system described by (1) and (9). The crossings of
the pseudoseparatrix are assumed to be relatively rare events.
They are associated with the formation of lobes, Chaotic trans-
port across the pseudoseparatrix is carried out by the detrain-
ing and entraining turnstile lobes, (Beigie et al. 1991). On
average, to within an approximation of order one, no transport
across the pseudoseparatrix can occur during a time interval
less than the mean zero upcrossing time 7, of the Melnikov
process. The mean zero upcrossing rate 1/7, may therefore
serve as an upper bound for the mean rate of exit from a well.
We show later that, in the case of white noise, it is a weak
upper bound.

Assume the stochastic excitation is Gaussian. The Melnikov
process M(2) is then Gaussian with mean m(?) = —Bc + z(¢),
standard deviation oy, and autocovariance function I'(t) =
E{(M() — m@)(M(t + 7) — m(t + 7))} [given by the Fourier
transform of the Melnikov’s process spectral density ¥y, (w)].
The mean zero upcrossing rate for the Melnikov process is

7. (1) = o {dlmy (/o]
+ [my (Mo Plm, (/o] Y b —m(2)oul/ow (18)

(Soong and Grigoriu 1992), where d(a) = (2m)~ " exp(~a?/2),
D(u) = [ d(a) do

my(8) = m(?) — [T (TWIT| oo i]m(2) (19)
o7 = =3 TT@V3T? o — T (TVOT| o] Y52 (20)
For g(1) = 0, z(t) = 0, so that
7.1 = v exp(—k%2) @cn
0 00 12
v=(1/2%) {[J' wZ‘PM(m)dm]/[f ‘I’M(m)dw]} :
0 (g
K = Bcloy (22a,b)
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Melnikov-based Lower Bound for Probability of
Nonoccurrence of Exits during Specified Time
Interval

Let us again assume the Melnikov process is nearly Gauss-
ian with expectation m(f) = Bc — z(t) and standard deviation
on. We define the ratio

Kk = {Bc — max[z(t)]ou (23)

which for g() = 0 reduces to (22b). For k sufficiently large
(e.g., k > 2.5, say), zero upcrossings are rare events, and the
probability that there will be no upcrossings during a time
interval [T,, T;] can be closely approximated by a Poisson
distribution. The probability that there will be at least one up-
crossing during the interval [T}, T,] is then

7,
pr.r, =1 — exp (—J dt/'ru(t)> (24)

T

The probability pr,r, is an upper bound for the probability that
exits from a well will occur during the interval [T, T5]. If 7,
is a weak bound, so is pr,r,. If g(f) = 0, the integral in (24) is
—(T, — T\, = —Tlv,, and we write

pr=1 —exp(—Th,) 25)
266 / JOURNAL OF ENGINEERING MECHANICS / MARCH 1996

For details, see Rice (1954) or Simiu and Scanlan (1986, p.
549).

Example

For definiteness we consider a Duffing oscillator excited
only by the process G(¢) (i.e., g(f) = 0), and assume that G(?)
has spectral density

27V(w)
0.05755In(w) + 0.14493; 040 = 0w = 1.20

\—0.38301[In(w)]’ + 1.06192In(w) — 0.02941; 120 < w < 1540
(26)

{0.039901n(m) + 0.12829; 0.04 = w = 0.40

(Fig. 2). To a first approximation this spectrum is representa-
tive of low-frequency fluctuations of the horizontal wind speed
(Van der Hoven 1957). It may be used as a model in appli-
cations where the length scale is sufficiently large that, owing
to spatial correlation effects, higher frequency fluctuations are
negligible (Simiu and Scanlan 1986, p. 169; Simiu 1994). In
(19) @ = 40/, £ is the dimensional frequency, , ~
2w/(4 days) is the dimensional frequency corresponding to
the spectral peak, which occurs at ® = w, = 4; ¥(w) =
¥ (w)/o?, ¥ () is the spectral density of the wind speed in
m?/s? (as a function of the nondimensional frequency ), and
the standard deviation of the dimensional wind speed fluctu-
ations is o, = 1.33 m/s. The model implicit in our assumptions
is Gaussian, although the physical reality is that wind speed
fluctuations are bounded.

From (11¢) and (22a), 0% = Var[M,] = 0.14y? and v =
0.24744. Since ¢ = 4/3 [(5)] and g(®) = 0, k = 3.563B/y
[(22b)]. Let us assume B/y = 1. Then 7, = 2,312 [(21)]. We
consider the nondimensional time interval corresponding to 10
days. Since the dimensional time 7, = 1 day corresponds to a
nondimensional frequency w = 4, that is, a nondimensional
time 27/4, the nondimensional time corresponding to 10 days
is T = 15.71, and the probability tht an exit will occur during
a 10-day time interval has the upper bound p; ~ 0.007 [(25)].
As we show in the next section, the actual exit probability is
very much lower. However, knowledge of the upper bound p;
can be useful in some practical applications.

Amplitude and Frequency of Idealized, Harmonically
Excited Counterpart of Stochastically Excited System

We now discuss the issue of the appropriate choice of ex-
citation amplitude and frequency for the harmonically excited
idealized system. Let the harmonic excitation be denoted by
£(2)"?yy cos(wy?). Its root mean square (RMS) value is £vyy,.
It appears reasonable to choose vy, such that €y, = €y, where
€y is the RMS of the stochastic excitation [(1) and (9)].

We may then assume, for example, oy = w,, where w, =
4 is the stochastic excitation’s spectral peak (Fig. 2). The
necessary condition for chaos would then be vy/B > 4/3/
() mwysech(Trwg/2)] = 20.88 [(4) and (8)]. Alternatively,
we may assume wy = W,s, where w, s = 0.76 is the frequency
of the peak of the admittance function S(w) (Fig. 3). We would
then have y/B > 0.71. A third choice, Wy = W, sy Where W, s¢
= 1.5 is the frequency of the peak of the spectral density of
the Melnikov process (Fig. 4), would yield y/B > 1.06. The
ratio /@ for which the necessary condition for chaos is sat-
isfied is seen to depend on the choice of frequency wy. Given
this dependence and the fact that a choice of wy would require
knowledge of both the forcing spectrum and the function S(w),
it is more natural and advantageous to use the stochastic Mel-
nikov approach, rather than the deterministic Melnikov ap-
proach applied to the idealized harmonically excited system.
This conclusion is reinforced by the incorrect inference drawn
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from the deterministic Melnikov approach that chaos is im-
possible for relatively small excitations, when in fact this is
not true for the actual stochastic system.

To recapitulate: (1) An attempt to assess the propensity for
chaos of a stochastic system by applying the Melnikov ap-
proach to its harmonically forced idealization entails the dif-
ficulty of selecting an appropriate forcing frequency, for which
there is no solution outside the stochastic Melnikov approach;
(2) the deterministic Melnikov approach yields no information
on chaos in the stochastic system for excitations with variance
smaller than the variance of the minimum harmonic forcing
for which deterministic chaos is possible; and (3) the direct
application of the Melnikov approach to the stochastic system
yields a lower (upper) bound for the probability that chaotic
transport cannot (can) occur during a specified time interval.
Simple approximate expressions for this probability are avail-
able for x > 2.5 or so [(24) and (25)].

For a study of necessary conditions for escapes in systems
excited by processes with continuous non-Gaussian distribu-
tions, see Simiu and Grigoriu (1995).

ADDITIVE WHITE NOISE: MEAN ZERO UPCROSSING
TIME FOR MELNIKOV PROCESS VERSUS
MEAN EXIT TIME

For additive white noise excitation and g(z) = 0, we can
compare the mean time T,, between zero upcrossings of the
Melnikov process, to the mean exit time from a well 1,,,. To
within any desired approximation (that is, for sufficiently large
N and k) 7,,, is given by (21). Remembering that in (1) € is
asymptotically small, we have the result

Tow () = E[X(O 1o exp[—2BV(x)/(ev?)] 7
E[X(1)"] = [e/4wR)]"?y;

o= l/{f exp[—2BV(x)/(ey?)] dx}

and X(#)* denotes positive value of X(?) [see, e.g., Soong and
Grigoriu (1992)]. We consider the Duffing oscillator, for which
V(x) is given by (2), and v = 0.188 [(224), (15), and {(4)]. For
B =0.1, y=0.025 ¢ =01, 7.0 = 9.1 X 10* [(22b), 1)
and (5)]; for B = 0.01, v = 0.0025, € = 0.1, 7,,,(0) = 2.6 X
10*97, For both these cases T,,, = 160.

For another illustration we now consider the case V(x) =
—cos x (rf-driven Josephson equation with zero bias) and g (#)
= 0. For this system S(w) = 27 sech(mw/2), and ¢ = 8 (Gen-

(28a,b)

chev et al. 1983), v = 0.0919. For B = 0.1, v = 0.025, £ = 0.1,
Too(m) = 1.9 X 10*™°; for B = 0.01, v = 0.0025, ¢ = 0.1,
T, () = 7.1 X 10", For both these cases T, = 7.66 X 10°.

It is seen from these examples that, for the case of white
noise, the performance of 71,,, as a lower bound for 7,,, is weak.
It is shown by Sivathanu et al. (1995) that 1, is also a weak
lower bound for 1, in the case of dichotomous noise. The
weakness of such lower bounds is to be expected, since the
Melnikov criterion provides only a necessary condition for
chaos; that is, for any bounded excitation process the Melni-
kov criterion results in a lower excitation than the excitation
that would actually induce chaos (escapes). It follows from
(25) that the probability of exceedance of this lower excitation
during a specified time interval is higher than (serves as an
upper bound for) the corresponding probability for the exci-
tation actually producing chaos.

SYSTEMS EXCITED BY NOISE WITH TAIL-LIMITED
MARGINAL DISTRIBUTIONS

We now consider stochastic processes with tail-limited dis-
tributions whose paths may be approximated arbitrarily closely
by uniformly continuous functions. For systems acted on by
such noise the Melnikov approach yields a criterion guaran-
teeing that no exit from a well can occur, however long the
waiting time. This is illustrated for the case of a Duffing os-
cillator excited by square-wave dichotomous noise. We assume
in this section g(?) = 0.

The expression for dichotomous coin-toss square-wave
noise is

G =a, [oa+@m-—Dh<t=(a-+ n 29)

where n = the set of integers; a = a random variable uniformly
distributed between 0 and 1; a, = independent random varia-
bles that take on the values —1 and 1 with probabilities 1/2
and 1/2, respectively; and ¢, = a parameter of the process G(¢).

A rectangular pulse wave of amplitude a, and length ¢, cen-
tered at coordinate ¢, = (@ + n — 1/2)¢t, has Fourier transform
F(w) —a,l(2/w)sin(wt;/2)exp(—jwt,)| (Papoulis 1962, p. 20).
The pulse itself can then be expressed as a uniformly contin-
uous sum of terms approximating as closely as desired the
inverse Fourier transform of F,(w). Each realization of the
coin-toss dichotomous square-wave can then be approximated
as closely as desired by a superposition of such sums, which
is itself a uniformly continuous function.

Uniformly continuous functions that would similarly ap-
proximate arbitrarily closely a process G(¢) with tail-limited
marginal distributions would induce a Melnikov process ap-
proximating arbitrarily closely the process

0

M@)=—Bc + v f MG — T dr (30)

The necessary condition for chaos may therefore be developed
simply by using (30); there is no need to carry out the ap-
proximation of the process G(f) explicitly.

From (5) and (29)

M) = —4B/3 + (2)"*yF(t) 31

!

F@) ~ D, a—sech[(n + )t — 1]

n=—{
+ sech[(n + a — 1) — 1} 32)

where [ is sufficiently large for the error due to the assumption
that { is finite to be as small as desired.

The area under the curve x(—¢) (3b) in a half-plane is (2)'2
It follows immediately from the definition of F(r) [see (31)
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FIG. 5. Realizations of Stochastic Motions Induced by Square-Wave, Coin-Toss Dichotomous Noise: (a) Nonchaotic Motion; (b) Cha-

otic Motion

and (32)] that ~2 < F(¢) < 2. (For example, F(z) would be
equal to 2 if « = 0, a, = 1 for all » such that # > 0 and g, =
—1 for all # such that ¢ < 0.) The necessary condition for chaos
is that M(?) have simple zeros. From (32) it follows therefore
that if

Biy > 2.121 (33)

then this condition cannot be satisfied, and chaotic transport
cannot occur. Eq. (33) is a remarkably simple criterion guar-
anteeing the nonoccurrence of exits. For additional details, see
Simiu and Hagwood (1995).

From (30) it follows immediately that (33) is also valid for
square wave dichotomous noise with random arrival times and,
more generally, that criteria similar to (33) can be derived for
any reasonable tail-limited random excitation. This can be seen
by replacing in (30) G(#) by its maximum possible value.

As was mentioned earlier, it was verified that if chaos is
possible [i.e., if (33) is not satisfied], then the mean upcrossing
rate of the Melnikov process is a weak lower bound for the
mean exit rate (Sivathanu et al. 1995).

We show in Fig. 5 time history realizations corresponding
to the dichotomous noise of (29), the parameters € = 0.1, B =
1.5 and, respectively, B/y = 2.13 > 2.121, B/y = 0.625. The
motion of Fig. 5(a) is confined to one well. Its irregularity is
due to the stochastic nature of the excitation. The chaotic mo-
tion of Fig. 5(b) is similar to chaotic motions induced in the
Duffing oscillator by harmonic or quasi-periodic excitation. Its
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irregularity is due to both the chaotic nature of the motion and
the stochastic nature of the excitation. We note that, as is the
case for equations with harmonic forcing (moon 1987), the
necessary condition for the occurrence of chaos is helpful in
the search for chaotic regions of parameter space even for
relatively large €.

APPLICATIONS

In this section we briefly review a few recent applications
of the stochastic Melnikov approach.

Wind-Induced Current Flow over Corrugated Ocean
Floor

We mentioned earlier the study by Allen et al. (1991) of a
quasi-geostrophic model of along-coast ocean currents induced
by fluctuating wind over bottom topography with periodic cor-
rugations normal to the coastline. In the absence of friction
and forcing this model exhibits homoclinic orbits due to the
existence of the corrugations. The homoclinic orbits are as-
sociated with potential wells separated by a barrier. Under ex-
citation by wind with low-frequency harmonic fluctuations,
and in the presence of friction, if a particle starts its motion
within a well with sufficiently small velocity, it will move
within that well for all time—unless the system’s Melnikov
function has simple zeros, in which case the particle can be-
have chaotically, moving back and forth across the potential



barrier in an apparently random fashion [see Allen et al.
(1991), for details].

Consider now the more realistic case where the wind fluc-
tuations are random. The excitation then induces a Melnikov
process. Assume for simplicity that the excitation is Gaussian.
Then, with probability one, the Melnikov process will have
simple zeros, and exits are possible— provided that one waits
long enough. However, the probability that exits will occur
within a specified finite time interval is less than one. Using
the approach described in this paper, this probability has been
estimated in a specific case by Simiu (1995), to which the
reader is referred for details.

Snap-through of Buckled Column with Distributed
Mass and Distributed Random Loading

This system differs from (1) in that it is governed by a
partial differential equation. For the deterministic, harmonic
loading case the Melnikov function was obtained by Holmes
and Marsden (1981). Melnikov-based criteria for snap-through
in the stochastic case were obtained by Simiu and Frey (1996).

Open-Loop Control of Multistable Systems

The performance of certain nonlinear stochastic systems is
deemed acceptable if, during a specified time interval, the sys-
tems have sufficiently low probabilities of escape from a pre-
ferred region of phase space. For example, the motion of a
ship subjected to wave loading may be modeled by an equa-
tion of motion with a nonlinear restoring term [see, e.g., Hsieh
et al. 1994). Given a design sea state with a specified mean
return period, a coordinate defining the behavior of the ship
(e.g., its roll angle) must have an acceptably small probability
of exit from the ‘‘safe’’ region of phase space. One way to
reduce the probability of escape during a specified time inter-
val is to apply to the system, with a time lag that is relatively
small in relation to a characteristic frequency of the excitation,
a counterforce that reduces the effect of the excitation.

Eq. (11b), or Figs. 2—4, show that an open-loop control
approach can be based on the observation that only part of the
frequency components of the excitation G(¢) contribute signif-
icantly to the spectral density of the uncontrolled system’s
Melnikov process. These are determined by the portion of the
function S(w) [(4)] that is not negligibly small (for example,
in Figs. 2—-4, components with frequencies 0.25 < w < 2.5).
The following approach is therefore used. Instead of a control
force proportional to the excitation G(t — t,), it would be more
efficient to apply a control force obtained from the function
G(t — 1) by filtering out from this function those frequency
components that do not contribute significantly to the spectral
density of the Melnikov process. Depending on the spectral
density of the excitation and the characteristics of the system,
this approach can reduce significantly the power needed for
the system’s control while achieving a comparable reduction
of the ordinates—and the mean zero upcrossing time — of the
controlled system’s Melnikov process and, hence, a compa-
rable reduction of the system’s mean exit time. This was con-
firmed by studies reported by Franaszek and Simiu (1995).

CONCLUSIONS

In this paper we reviewed basic results on the application
of the stochastic Melnikov approach to a class of near-inte-
grable systems with additive or multiplicative noise. We com-
pared this approach with the deterministic Melnikov approach
applied to an idealization of the stochastic system wherein a
harmonic excitation is substituted for the stochastic forcing.
The stochastic Melnikov approach eliminates errors associated
with the choice of amplitude and frequency of the stochastic

excitation’s harmonic counterpart. Unlike the approach based
on a harmonic idealization of the stochastic forcing, for sto-
chastic systems with noise having infinite-tailed marginal dis-
tributions the stochastic Melnikov approach reflects the sys-
tems’ full range of chaotic transport possibilities.

For systems with additive or multiplicative noise, the mean
zero upcrossing rate 7, ' for the stochastic system’s Melnikov
process provides an upper bound for the system’s mean exit
rate 7, . However, as shown by comparisons between 7, ' and
. ! for the case of white noise, this upper bound can be very
weak. This is explained, at least in part, by the fact that, for
both stochastic and deterministic systems, the Melnikov con-
dition for chaos is necessary but not sufficient.

For nonlinear systems excited by processes with tail-limited
marginal distributions remarkably simple criteria can be de-
rived that guarantee the nonoccurrence of exits. This was il-
lustrated for square-wave, coin-toss dichotomous noise. We
also reviewed briefly three applications of the stochastic Mel-
nikov approach: (1) the estimation of upper bounds for prob-
abilities that alongshore currents induced by wind with given
mean speed over a corrugated ocean floor can experience exits
from a preferred region of phase space during a specified time
interval; (2) the snap-through of columns with distributed mass
and distributed random loading; and (3) the efficient open-loop
control of multistable systems.

The validity of the Melnikov approach can be proven rig-
orously for asymptotically small perturbations. Numerijcal ex-
periments have shown that the approach can be useful also for
systems with relatively large perturbations. It should be re-
membered, however, that beyond some perturbation level a
system may not behave as predicted by the Melnikov ap-
proach. This is another limitation shared by the stochastic and
deterministic Melnikov approaches.
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